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Abstract

The selection and study of descriptive variables of protein-protein complex interface is a major question that many biolo-

gists come across when the research of protein-protein recognition is concerned. Several variables have been proposed to understand the

structural or energetic features of complex interfaces. Here a systematic study of some of these “traditional” variables, as well as a few new

ones, is introduced. With the values of these variables extracted from 42 PDB samples with real or false complex interfaces, a binary logis-

tic regression analysis is performed, which results in an effective empirical model for the evaluation of binding probabilities of protein-pro-

tein interfaces. The model is validated with 12 samples, and satisfactory results are obtained for both the training and validation sets.

Meanwhile, three potential dimeric interfaces of staphylokinase have been investigated and one with the best suitability to our model is pro-

posed.

Keywords: protein-protein recognition, binary logistic regression, interfacial descriptive variable.

Non-covalent protein-protein recognition is es-
sential to biological functions. Biologists are interest-
ed in how protein-protein recognition is fulfilled and
what features are common among protein-protein
complex interfaces. Different types of complexes, in-
cluding subunit-subunit interfaces, protease-inhibitor
bindings, growth hormone receptor complex, and an-
tibody-antigen interactions, etc. have been stud-
jed!* 7). Cherfils and Janin studied
known protein-protein interfaces and found that non-

Duquerroy,

native alternative predicted dockings often had as

interfacial areas'®’.

many hydrogen bonds as
Lawrence, and Colman developed methods to study
shape complementarity at protein-protein interfaces
and showed that antibody-antigen interfaces are gen-
erally less well-packed than other protein-protein in-
(91 Manocha and Wright computed in-
terfacial surfaces that pass between two protein

molecules ' .

terfaces, etc.

Keskins proposed solvent inter-residue
contact potential for protein-protein recognition[“].
In summary, structural and computational biologists
have employed as many types of interfacial variables
as they could find to describe the geometric or ener-
getic features of the complex binding sites at different
levels in these papers. Generally, it was well recog-
nized that two types of complementarity ought to be
satisfied; geometric complementarity and energetic
complementarity. So far, not a single variable men-

tioned above can satisfactorily fulfill the determination
of interface formation.

It is also important to distinguish the interface
variables from surface ones. For example, Jones and
Thornton tried to reveal the difference between sol-
vent-accessible surface of protein and buried interface

with 6 variables!!?!

. Their variables only characterize
the properties of the individual surface patch of each
molecule, but not those of the interaction interface.

Neither did they give a quantified prediction model.

In our work, we studied many variables which
were previously used or newly defined to analyze the
interfacial features. We proposed an empirical model
by binary logistic regression analysis. This work is
based on an assumption that there is a dependent vari-
able which has separate distributions between real and
false interfaces. Such a dependent variable was de-
rived from many interfacial variables.

1 Materials and methods

Twenty-five protein complex structures with in-
terfaces of biological function and 17 monomer pro-
teins with *“ pseudo-interfaces” of crystallographic
packing were extracted from Brookhaven protein
databank (PDB). The 25 complex structures belong

to different classifications defined by I.o Conte et
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al. [13],

and have different biological functions and
structural details. Meanwhile, 17 monomer proteins
without real complex interfaces but with crystallo-

Table 1.

graphic interfaces presented in their PDB structures
were also employed. The PDB IDs of real complex
samples and monomer samples are listed in Table 1.

Training samples for statistical study

Protein-protein complexes with real interfaces

Monomers with “pseudo” interfaces

Protease-inhibitor (5 items):

lavw 1cho lese 1mkw 2ptc

Large protease complexes (4 items) ;
1bth 1tbqg 1toc 4htc
Antibody-antigen (3 items) :

1jhl 1nca losp

Enzyme complexes (5 items):

1brs 1dhk 1fss 1gla 1ydr

G protein and signal transduction (4 items) :
lagr 1fin 1tx4 2trc

Miscellaneous (4 items) :

1a71 1{c2 ligc lycs

1a8v 129m lamu lace layf 1ba2 1bb3 1bja 1bry 1cgf
lcre 1dek 1dy5 1dzk 1e2w ledy leox 1fmt 1fvk 1g8i
1h97 liaz lilr 1lys 1mdv 1qin 1sei 3tmy

The extracted structural and energetic descrip-
tors include:

(i) The area of buried interface “A.”. The ac-
cessible surface area of the complex and the compo-
nents are calculated by GETAREA 1.1, a web-based
program provided by Sealy Center for Structural Biol-
ogy'*¥!
mately calculated by the equation as follows:

Ayp = (Acompol + AcompoZ - Acompl)/27 (1)
where A o1 Tepresents the solvent accessible area of
component 1 before binding; A mpes the area of
component 2; A ., the solvent accessible area of
complex after binding; Ay is often used in the de-
scription of a complex interface.

. The area of buried interface, Ay, is approxi-

(ii) The number of atoms buried in the inter-
faces “N,”. The interfacial atoms are extracted if one
atom is in contact with another atom of different
component with their distance less than the sum of
their Van Der Vaals radii and a solvent diameter. The
total number of atoms buried in the interfaces, Ny, is
then summed.

(iii) The number of hydrogen bonds between
complex components “N,”. Ny is obtained from the
hydrogen bonds involved in the interfacial binding.
The hydrogen bonds were picked when the hydrogen
donor and the acceptor contact each other with the
distance less than the hydrogen bond length. Struc-
tural biologists concern about hydrogen bond when
they observe or propose a complex interface.

(iv) The score of charged residue pairs buried in

the interface “S4,”. S is calculated from the num-
ber of charged residue pairs meeting on the interfaces.
The equation is:

Sch = Nogpo = Nidens (2)
where N, represents the number of opposite
charged residue pairs buried in the interface; Ny, the
number of identical charged residue pairs. The higher
the S, the stronger the two components bind to-
gether. We found that S, is a rough but effective
variable.

(v) The area ratio of buried interfaces to the to-
tal area of a complex surface “R,”.

(vi) The ratio of the buried atom number to the

”

total complex atoms number “R

(vii) The ratio of hydrogen bonds between com-
plex components “R, ”.

(vii1) The score ratio of charged residue pairs be-
tween complex components “R 4" .

(ix) A scoring function by interfacial residue-
pair contact potential “S

cp
ing function, derived from pairwise contact potential

S.p 1s an energetic scor-

which extracted from interface samples at residue lev-

61[11,15] l):
> CP;
Se = —n]\]_—, (3)

cp

where CP;; represents the contact potential of residue
i with residue j defined by Keskin. N, represents
the number of contact residue pairs.

1) Lin, W. et al. A statistical analysis of protein-protein interaction with knowledge-based potential at residue level. Tsinghua Science and Tech-

nology, in Press.
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(x) Patch interface propensities “PIP”. PIP is

a scoring function proposed by Jones and Thorn-
tonl 12167

N
Z} (InIPy)

PIP = N (4)

Y

This variable is derived from the relative fre-
quency of different amino acid residues in the inter-
face of complexes and used for prediction. Please refer

to the Jones’ paperst’®1®! for the value of IPaa.

(xi) The solvation potential of interface patch,
“ASP”, is also used to evaluate the preference of
residues exposed to solvent environment. Please refer
to the Jones’ papers[lz’lf’] for the calculation of ASP.
When two components bind together, there
change between the ASP of components and the ASP
of the complex. We define S, to measure this change
by the following equation:

is a

Z (ASPcompo - ASPcompl)

Ssp = Ncp ’ (5)

where ASP g, is the ASP of the complex and

ASP opo is the ASP of the components. The larger
di2l,

the S,,, the more possible the patch is burie

Among the ratio variables, R, was calculated
from the buried area divided by the surface area of the
whole complex. The other three ratio variables were
calculated from the corresponding variables divided by
the atom numbers of both component molecules. A
total of 11 descriptors for each proposed interface

were taken as our input variables.

With these variables of the samples, we per-
formed binary logistic regression analysis with SPSS
10.0 package. The principle of this work is as fol-
lows: A variable “y” represents the property of a pro-

posed interface. If an interface is a real one from a
complex, then y=1, while y =0 for a false one. By
binary logistic regression analysis of these variables
from training samples, an empirical probability equa-
tion would be obtained as follows:

b0+ E blll
e i
P(»":“Ix) - b0+Eb’11’ (6)
1+e
where r; represents the variable values extracted from

the proposed interfaces. P(,-q|,) represents the

probability of “y=1", i.e. real interface, on condi-
tion that the variables have values of ;.

With the values of the variables of a proposed in-
terface obtained, we are then able to evaluate the
probability of the complex interface being real by this
equation.

To test the validity of such a model, 6 complex
structures and 6 monomer structures outside the
training set were used as validation samples. With
their x; and by Eq. (6), the probabilities were calcu-
lated.

Three potential dimeric interfaces of staphyloki-
nase were also investigated with the model to verify
their suitability to our model.

2 Results and discussions

The authenticity of the biological interfaces of
the 25 complex samples has been proved by experi-
ments. The 17 pseudo-interfaces of the monomeric
proteins presented only in crystal structural experi-
ments, without functional experiments demonstrating
that they are biological interfaces, thus we treat these
interfaces as pseudo or false ones. The values of the
interfacial variables of the forty-two training samples
are summarized in Table 2.

Table 2. Values of the variables extracted from the interfaces of training samples

PDB ID Components’ chain ID  Ay(A2) Ny Ny S Ruo{%) R,(%) Ru(%) Ru(%) Se PIP S

lavw A&B 871 172 4 1 4.96 4.56 0.11 1.39 0.0048 0.218 0.018
Icho E&I 752 130 4 2 11.63 5.28 0.16 2.99 0.0048 0.159 0.006
lese E&1 749 144 8 0 5.39 5.12 0.28 0 0.0054 0.164 0.038
Imkw HL & K 293 107 0 3 1.12 1.96 0 10.7 0.0035 0.107 0.004
2ptc E&l 716 136 8 1 5.50 5.55 0.33 1.49 0.0048 0.125 0.056
1bth HL & P 1198 236 13 S 6.99 6.27 0.35 5.15 0.0043 0.134 0.053
1thy HL & R 1766 315 11 4 8.23 7.10 0.25 2.85 0.0046 0.065 0.037
1toc AB & R 1776 316 18 2 8.32 6.88 0.39 2.03 0.0047 0.085 0.032
4htc HL & 1 1204.51 274 7 6 6.84 8.81 0.23 5.26 0.0049 0.121 0.047

To be continued
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Continued
PDBID Components’ chain ID  A,(A?) Ny Ni  Sa RJ{%) R.%) Ru(%) Ra(%) S, PIP Se
1jhl HL & A 633 112 5 2 3.80 3.80 0.17 4 0.0045  0.138 0.062
Inca HL & N 990 167 9 1 291 234  0.13 1.11 0.0047  0.069 0.039
losp HL & O 756 158 5 -1 2.24 2,19  0.07 —1.89 0.0047 0.003 0.083
Tbrs A&D 786 151 10 4 7.35 6.89  0.46 6.90 0.0049 0.074 0.055
1dhk A&B 1538 285 12 5 5.75 3.57  0.15 4.07 0.0049 0.072 0.022
1fss A&B 995 177 7 6 4.16 3.38  0.13 8.33 0.0052 0.133 0.036
1gla F&G 657 86 6 2.50  1.59  0.02 12.00 0.0045  0.080 0.030
1ydr E&I 1012 157 9 7 571 4.21  0.24 10.29 0.0046  0.089 0.030
lagr A&E 838 143 7 5 3.37 2.8  0.14 7.81 0.0059 —0.024 0.089
1fin A&B 1722 274 12 5 6.5 5.05 0.22 4.1 0.0047 0.090 0.041
1ixd A&B 1154 176 9 6 6.09 4.72  0.24 6.67 0.0051 0.054 0.039
2tre BG & P 2246 361 27 14 7.05 6.21  0.46 8.05 0.0041 0.101 0.045
1a71 A&B 1715 304 11 4 567 4.54 0.16 2.67 0.0044 0.124  —0.00113
1c2 C&D 656 107 3 -1 426 3.96 0.11 -2.27 0.0036 0.258 0.000481
lige HL & A 683 117 8 0 2.33  2.69 0.18 0 0.0048 —0.097 0.104564
1yes A&B 745 140 6 5 3.87 3.8 0.16 11.1  0.0046  0.153 0.033946
1a8v A&B 471 93 4 4 330 3.71  0.16 9.09 0.0058  0.085 0.080767
129m A&B 1887 335 20 -1 14.02 15.1 0.9 -0.70 0.0044 0.157  —0.02235
1ba2 A&B 275 27 0 0 1.12  0.58 0 0 0.0066 -—0.144 0.075485
1bb3 A&B 512 72 3 -1 3.81  2.67 0.11 -2.78 0.0049 0.076 0.042423
1bja A&B 926 128 4 -1 819 6.15 0.19 —1.37 0.0044 -0.032 0.063337
1bry Y&Z 85 3 0 -1 0.39  0.07 0 -14.29 0.0072 -0.260 0.092002
lcgf A&B 197 28 2 1 1.20 0.80 0.06 9.09 0.0055 -0.022 0.068514
ledy A&B 554 73 0 6 265 1.66 0 15.79 0.0063 -0.160 0.132043
1fmt A&B 600 74 2 0 2.11  1.32  0.04 0 0.0050  0.066 0.028203
1fvk A&B 759 113 5 -1 4.05 3.08 0.14 -2.13 0.0052 0.075 0.054835
1h97 A&B 319 30 1 3 2.07 0.33  0.01 15.79 0.0058  0.042 0.058503
liaz A&B 411 63 3 0 2,60 1.72  0.08 0 0.0050 - 0.058 0.040858
1lys A&B 305 45 1 -1 2.33 1.9  0.04 —4.55 0.0064 -0.108 0.0706
1mdv A&B 750 64 2 0 4.55 1.83  0.05 0 0.0059 -0.053 0.151799
1qin A&B 3758 650 19 0 15.90 17.2 0.50 0 0.0044 0.128 0.013068
1sei A&B 316 47 1 -1 217 1.64 0.03 -5 0.0061 - 0.005 0.085762
3tmy A&B 135 29 2 -2 111 1.17  0.08 -25 0.0064  0.079 0.080441

Different combinations of the eleven variables
were analyzed with the regression program of the
SPSS package. The parameter (5;) of each variable
as in Eq. (6), the statistical significance of each vari-
able and the correct percentage of the model were
computed by the program. Two indexes were used to
monitor the selection of the discriminative variable
combinations. One is the correct percentage of the
model. The other is the significance index of each
variable. The higher the correct percentages and the
lower the significance indexes, the better. Further-
more, it is necessary to judge whether the model is
consistent with well-accepted principles on protein-
protein recognition. For instance, one of the combi-
nations contains the interfacial area ratio (R,) as a
variable ( x;), with a negative value of parameter
(b;) in Eq. (6). As is well known, the bigger the

interfacial area, the higher possibility the complex
components bind together. Therefore a negative value
of parameter for the interfacial area ratio is irrational,
probably induced by noise, and should be eliminated.

With these 3 aspects satisfied, we obtained the
following model as in Eq. (7) (Model A). The data

of regression analysis are shown in Table 3.
21.442+1 .062'Sch*5635.242'SCP+79.449'Ssp+27.462'PIP

e
Piy=11z)= 21.442+1.062- S, - 5635.242-5_+79.449-5_+27.462- PIP *
+e ® £
(7
Table 3.  Parameters for 4 variables of Model A and 2 variables of
Model B
Variables S Se Se PIP  Constant
o Model A 0.011 0.011 0.053 0.063 0.015
Significance
Model B 0.011 0.008 0.008
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It is found that the 4 variables in this equation
are all energetic or semi energetic descriptive vari-
ables. The probabilities of the training samples were
calculated. Thirty-eight of the forty-two samples are
correctly classified, as shown in Table 4 and Fig. 1
(a). Model A presents the highest correct percentage
with every significance index of the input variables
and of the constant part (&) lower than 0.07, a sat-
isfactorily acceptable value.

Table 4. Self classification of samples with regression Model A and
Model B
Pseudo Real Percentage correct
Model A Pseudo 15 2 88.2
Real 2 23 92.0
Overall percentage 90.5
Model B Pseudo 14 3 82.4
Real 3 22 88.0
Overall percentage 85.7

The cut value is 0.5.

Observed groups and predicted probabilities

16 1
1
1
12 H
1
1
1
8 H
1
0 i
0 1
410 H
1
0 11
Predicted |20 9% 00 01 0 011 1 Lot oif 1111
probability: 0 0.25 0.50 0.75 1
Group: 10000000000000000000000000000011111111I1T1IT1LIILITI1L1NL1EY
(a)
6 Observed groups and predicied probabilities
12

——

Q0
=

1]

1

1) 1

440 H

0 1 1

0 0 0 0 1 111

Predicted 00 0l 00 O (3 01 0 1‘1 10 1 { 0 101 1111
probability: o 0.25 0.50 0.75 1
Gl’Oup: 000000000000000000000000000000111111111111111111111111111111

(b)
Fig. 1. Observed group and predicted probability with regression
Model A (a) and Model B (b). Pseudo interfaces (0) and real in-

terfaces (1) are finely clustered.

Twelve validation samples outside of the training
set were also studied with Model A. Ten of them

were correctly classified, as shown in Table 5. We al-
so used Model A to test the three proposed dimeric
structures of staphylokinase (1¢77, 1¢78 and 1¢79)
and found 1¢78 presented highest probability, 0.99,
indicating 1¢78 is the most possible dimeric model.
The results are shown in Table 6.

It was realized that two variables among the 4 in
Eq. (7), patch interface propensities ( PIP) and sol-
vation potential of interface patch (S,), were very
difficult to obtain for a proposed interface, because
such an interface only provides structural details at
low resolution. Therefore, we tried to eliminate these
two variables from Model A and re-performed the re-
gression analysis with the remaining two variables,
shown in Table 3. It was discovered that the result-

ing model (Model B) was also sufficiently acceptable.
17.082+0.895-S_-3601.69-5

e
P(y:llz,) - 17.082+0.895-5  -3601.69-S | - (8)
+ d

€

The same evaluation process as Model A was
performed as Model B. Thirty-six of the forty-two
training samples are correctly classified, as shown in
Table 4 and Fig. 1 (b). The significance indexes of
the two variables and of the constant are less than
0.011. Judged with significance index values, Model
B seems to be more reliable than Model A though its
correct percentage is a bit lower.

For the validation of the twelve samples with
Model B, as shown in Table S, eleven were correctly
classified. The three proposed dimeric structures of
staphylokinase were also tested with Model B. The
interface of 1¢78 produced the highest probability,
0.67 (see Table 6), concurring with the analysis re-
sult with Model A in that 1c78 is the most passible
dimeric model.

To further understand the discriminative capaci-
ty of the 4 individual variables used in our models, we
analyzed the frequency distribution of these variables
among the training samples shown as Fig. 2 (a) ~
(d). There are ambiguous separations between the
distribution peaks of the real interfaces and those of
the pseudo interfaces in these figures, which indicates
these four individual variables could somewhat but not
clearly differentiate the two types of interfaces. We
also studied the frequency distribution of combination
variables derived from Eqgs. (7) and (8), as indicated
in Egs. (9) and (10) from Model A and Model B,
and shown in Fig. 2 (e) and (f), respectively. The
separations of the distributions in Fig. 2 (e) and (f)
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are significant, which suggests the combination vari-
ables score, and scorey, from Egs. (9) and (10) are

much more discriminative than the individual vari-

ables.

Table 5. Values of variables from 12 validation samples and the calculated probability of their interfaces
PDB ID Components’ chain ID Ab(AZ) Ny Np Sa Rd%) R(%) Ruw(%) Ru(%) Se PIP Se  Praa) Proam
la2w A&B 1998 354 24 -1 11.97 13.38 0.91 ~0.66 0.0049 0.052 0.030 0.03 0.19
la3y A&B 786 134 2 -1 4.92 3.75 0.056 —1.85 0.0056 0.076 0.067 0.02 0.02
latk A&B 309 38 0 0 2.23 1.36 0 0 0.0054 -0.027 0.028 0.00 0.09
1ai9 A&B 472 75 4 1 2.29 1.83 0.1 3.84 0.0051 -0.016 0.065 0.18 0.40
1194 A&B 449 43 0 3 1.50 0.59 0 8.33 0.0065 -0.039 0.066 0.00 0.03
1mdt A&B 388 49 2 -2 0.93 0.56 0.022 -—-8.70 0.0039 0.044 0.011 0.36 0.78
lacb E&I 797 141 7 1 5.36 5.36 0.27 1.49 0.0045 0.193 -0.024 0.62 0.85
1bhf A&l 275 43 1 2 3.93 3.00 0.07 13.3 0.0039 0.094 0.045 1.00 0.99
lgua A&B 652 117 5 6 4.79 4.34 0.19 16.2 0.0046 0.047 0.080 1.00 1.00
1ppf E&I 679 125 5 1 4.83 4.51 0.18 1.67 0.0040 0.123 -0.011 0.92 0.97
lyvn A&G 1009 180 7 -1 4.36 3.72 0.145 -—-1.22 0.0044 0.122 0.006 0.35 0.58
2jel HL & P 762 135 6 0 3.14 2.87 0.127 0 0.0047 0.080 0.034 0.46 0.54
Table 6. Values of variables from 3 proposed models of staphylokinase and the calculated probability of their interfaces
PDB ID Components’ chain ID A(A?) Ny, Ny Sa R.%) R.(%) Rw(%) Rux(%) S PIP Se  Puda) Prde
177 A&B 542 68 2 0 3.28 2.46 0.07 0 0.0056 0.053 0.093 0.22 0.04
1c78 A&B 457 68 g8 -1 2.76 2.44 0.28 -4.17 0.0043 0.051 0.096 0.99 0.67
1¢79 A&B 216 17 2 1 1.31 0.61 0.07 7.14 0.0063 —0.113 0.096 0.00 0.01
| Pseudo | | Real Pseudo Real [7]
40 40
€ 301 B\E/ 30
= =}
g £ 2
E 20 L
10 10
[] X i i i
0 4 8 12 0 4 8 12 0.004 0.005 0.006 0.007 0.004 0.005 0.006 0.007
a) S
@ S ® S,
30 Pseudo Real ] 40 Pseudo ‘ Real [7]
€ 30 .
g€ £ ‘
8 £ 20 B
&
— 10 % | :
8 L0 m | L e
| | 1
0.2 0 005 010 015 O 005 0.10 0.15
@S,
40 Pseudo { Real ‘ 40 ] Pseudo {Eeﬂ]
&£ -
Z 30 \ €30
8 E
2 17}
& 20 ‘ £
10 H 10
o S S S TSI N NCTD T
(e) Score, (f) Score,
Fig. 2. Frequency distribution of four variables and two scores in real complex interfaces and pseudo interfaces. Individual variables pre-

sent distribution separation ambiguously while score, and score}, present significant separation.
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score, =21.442 +1.062 - Sy, — 5635.242 - S,
+79.449 - S, + 27.462 - PIP, (9)

scorep, = 17.082 + 0.895 - Sy, —3601.69 - S,.
(10)

As is well known, the eleven variables can be di-
vided into two classifications. One classification de-
scribes the shape features of the interfaces and the
other describes the energetic features. As we can see
from previous discussions about the regression analy-
sis, the four selected variables are all energetic or semi
energetic parameters. So our models strongly suggest
that energetic variables contribute much more than
shape varnables.

Among the eleven variables we employed, score
of charged residue pairs buried in the interface (Sg,)
and interface-based residue-pair contact potential
score (S.,), and the two variables kept in Model B
can be calculated at low resolution. Therefore, Model
B provides a very practical method to evaluate the ra-
tionality of a proposed interface from two known sur-

{ace patches.

In this paper, we employed the interfacial de-
scriptors which are widely concerned by structural bi-
ologists. We previously derived S, and found that its
performance is limited when used independently.
However, combined with other descriptors, it con-
tributed with very satisfactory performance. In the
future, more discriminative interfacial descriptors
might be introduced and included in the regression

model and the prediction would be further improved.
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